Monte Carlo Markov Chain methods in seismic deconvolution
نویسنده
چکیده
One prevailing assumption in reflection seismology is that the observed trace can be described as a convolution of a source wavelet with the Earth’s reflectivity plus some noise. In a conventional deconvolution approach one thus estimates a linear deconvolution filter to retrieve the reflectivity series from the observed data. This amounts to taking linear combinations of noisy observations and there is thus always a trade-off between recovery of the underlying reflectivity series and noise amplification.
منابع مشابه
Bayesian deconvolution of noisy filtered point processes
The detection and estimation of filtered point processes using noisy data is an essential requirement in many seismic, ultrasonic, and nuclear applications. In this paper, we address this joint detection/estimation problem using a Bayesian approach, which allows us to easily include any relevant prior information. Performing Bayesian inference for such a complex model is a challenging computati...
متن کاملMarginal maximum a posteriori estimation using Markov chain Monte Carlo
Markov chain Monte Carlo (MCMC) methods, while facilitating the solution of many complex problems in Bayesian inference, are not currently well adapted to the problem of marginal maximum a posteriori (MMAP) estimation, especially when the number of parameters is large. We present here a simple and novel MCMC strategy, called State-Augmentation for Marginal Estimation (SAME), which leads to MMAP...
متن کاملBayesian characterization of buildings using seismic interferometry on ambient vibrations
Continuous monitoring of engineering structures provides a crucial alternative to assess its health condition as well as evaluate its safety throughout the whole service life. To link the field measurements to the characteristics of a building, one option is to characterize and update a model, against the measured data, so that it can best describe the behavior and performance of the structure....
متن کاملBayesian Deconvolution of Functions in RKHS Using MCMC Techniques
We propose a novel stochastic approach to reconstruct the unknown input of a partly known dynamical system from noisy output data. We assume that the unknown function belongs to a Reproducing Kernel Hilbert Space (RKHS). We then design an algorithm based on the Markov chain Monte Carlo (MCMC) framework which is able to recover the minimum variance estimate of the input given the output data.
متن کامل